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ABSTRACT

A parametrically excited higher—order nonlinear Schrodinger (NLS) equation is derived to describe the
interaction of a,slowly moving planetary—scale envelope Rossby soliton for zonal wavenumber—two with a
wavenumber—two topography under the LG—type dipole near—resonant condition, The numerical solution of this
equation is made, It is found that in a weak background westerly wind satisfying the LG—type dipole near—resonance
condition, when an incipient envelope Rossby soliton is located in the topographic trough and propagates slowly, it
can be amplified through the near—resonant forcing of wavenumber—two topography and can exhibit an oscillation,
However, this soliton can break up after a long time and excite a train of small amplitude waves that propagate west-
ward. In addition, it is observed that in the soliton—topography interaction the topographically near—resonantly
forced planetary—scale soliton has a slowly westward propagation, but a slowly eastward propagation after a certain
time. The instantaneous total streamfunction fields of the topographically forced planetary—scale soliton are found to
bear remarkable resemblance to the initiation, maintenance and decay of observed omega—type blocking high and
dipole blocking. The soliton perturbation theory is used to examine the role of a wavenumber—two topography in
near—resonantly forcing omega—type blocking méh and dipole blocking, It can be shown that in the amplifying pro-
cess of forced planetary-scale soliton, due to the inclusion of the higher order terms its group velocity gradually tends
to be equal to its phase velocity so that the block envelope and carrier wave can be phase—locked at a certain time.
This shows that the initiation of blocking is a transfer of amplified envelope soliton system from dispersion to
nondispersion. However, there exists a reverse process during the decay of blocking, It appears that in the higher lati-
tude regions, the planetary—scak envelope soliton—topography interaction could be regarded as a possible mechanism
of the establishment of blocking,
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1. Introduction

Low—frequency blocking flows are very important phenomena in the atmospheric fluid
(Rex,1950a,b; Shutts, 1983; McWilliams, 1980). A very interesting problem is to investigate why
such structures usually occur in the North Atlantic Ocean (or Europe) and North Pacific (Charney
and DeVore, 1979; Tung and Lindzen, 1979). Such studies will be very important in leading to
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increased understanding of atmospheric coherent structures such as blockings (McWilliams, 1980).
However, presently, there is no completely satisfactory analytical theory of blocking—topography
interaction, In particular, the previous studies are mainly focused on the interaction of blocking with
isolated topography (Warn and Branset, 1983; Swaters, 1986). To some extent, these models are not
successful in describing the location and flow pattern of observed blocking highs at high latitudes,
especially in explaining why such structures can prevail in the weak background westerly wind
(McWilliams, 1980; Shutts, 1983; Legras and Ghil, 1985). In a highly resolved truncated spectral
model with a wavenumber—two topography, Legras and Ghil (1985) found that in a moderate range
of weak background westerly wind that is near the dipole near—resonance, the blocking high can oc-
cur in the topographic trough. Thus, it would be interesting to investigate the near—resonant
interaction of blocking with wavenumber—two topography in an analytical model.

Although the previous models have achieved some successes in modeling some aspects of ob-
served blocking high and dipole blocks, there remain, however, serious questions about why most
blockings occur in the two oceans where the weak basic westerly wind prevails, in particular in the
high latitude region (McWilliams, 1980; Treidl et al., 1981). This means that it is necessary to estab-
lish a new analytical model of the blocking—topography interaction. Benney (1979), Yamagata
(1980) and Boyd (1983) investigated envelope Rossby solitons in mid—high latitudes and at the equa-
tor. Afterwards, the dynamics of envelope Rossby soliton applicable to atmospheric blockings was
studied widely by Luo (1991,1997a,1999,2000a,b). The present paper is a report on the interaction
between slowly moving planetary—scale envelope Rossby soliton and wavenumber—two
topography. We begin with a simplest barotropic model in order to gain insight into the most essen-
tial aspects of the blocking~topography interaction. Further studies using more realistic baroclinc
models will be reported elsewhere.

This paper is organized as follows: In Section 2, in an inviscid, barotropic and
quasi—geostrophic model with topography a parametrically excited higher—order nonlinear
Schrodinger (HNLS) equation is obtained to describe the near—resonant interaction between planet-
ary—scale envelope Rossby soliton and a wavenumber—two topography. In Section 3, the numerical
solution of this equation is presented. In Section 4, the soliton perturbation theory used widely by
many investigators (Abdullaev, 1989; Kivshar and Malomed, 1989; Hasegawa and Kodama, 1995)
is used to explore why the wavenumber—two topography can reinforce and maintain blocking highs
in a weak background westerly wind. The conclusion and discussions are summarized in Section 5.

2. The derivation of the parametrically excited HNLS equation

The nondimensional, nondissipative, barotropic and quasi—geostrophic potential vorticity
equation with bottom topography on a beta—plane channel can be written as (Charney and Devore,
1979; Luo, 1997b, 1999)

9 _ N _
7 (Vy— R+ JO, V2 y+ h)+ ‘Bé’x =0, 1)

where the parameters and notation can be found in Luo (1999),
The flow is contained within a beta—channel on whose boundaries

-ai = =
ax 05 y 09 Ly9 (2)

while the zonally averaged part of the streamfunction, ¥ (y, ¢), must satisfy
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9 57——0, y=0, L, €}

where L, is the width of the beta—channel

In the Northern Hemisphere (NH), the heights of nondimensional topography between
30°N and 60°N were found to correspond in turn to 0468, 0.519, 0.343 and 0.327 for zonal
wavenumbers 1—4 (Peixoto et al., 1964). Because the wavenumber—two topography is dominant and
blocking flows usually exhibit a wavenumber—two structure (Charney and Devore, 1979), the
large—scale topography in the Northern Hemisphere can be approximately considered as a
wavenumber—two topography. On the other hand, because the topographically induced disturbance
has the same order as the free linear Rossby wave (Tung and Lindzen, 1979; Luo, 1997b, 1999), the
topographic assumption 2= ¢h’ should be acceptable for our study here, where 0< y, < ¢e< < 1.0
has been assumed with the Rossby number y, = U / (f, L)= 0.1 (Luo, 1997b). Consequently, we
can introduce a topographic amplitude parameter ¢, so that

y=-—wt &, h=eh, 4)

where u is the uniform basic westerly wind,
The substitution of (4) into Eq. (1) yields
.6_ __(7_ 200 / 2,1, / oy’ —‘6_}1/ —
Gyt w5 (VP U= Y eI+ W)+ (Bt Fifg—+ i =0, )
If we can introduce the slowly varying coordinates (Yamagata, 1980; Hasegawa and Kodama,
1995)
E=e(x— C,1), T=¢t, 6)

then when it is substituted into Eq.{5), we obtain

’ 2 ’

L)+ X+ da@- cg)—a‘z (V- PO+ 2+ T )—'Lgxag + B+ Fi}%'/é—
vy / 27 0 2.0/ ’ - >y ﬁ __?_ oty
+HIW VI WOI R (Vi B+ 20 Cg)_laxacz + (Gt i pre
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with the boundary conditions that
W _ o ZWoLT)_ o YLD,
ax " Tya % Tgar %70 Ly ®
L, 2 o ). ..
where L( )= (6_t + Uz~ AV ( )= F( )+ B+ Fﬂ—ax— is a linear Rossby wave operator.

In Hart (1979), Charney and Devore (1979), Trevisan and Buzzi (1980) the topography was as-
sumed to be a periodic forcing. In this paper because the bottom topography has been assumed to be
a wavenumber—two symmetric topography (Charney and Devore, 1979; Li et al,, 1986), if the
topographic feature is prescribed, the analytical solution to Eq.(7) can be obtained when all the high-
er order terms larger than the order ¢ are neglected, However, if all higher order terms are
considered, the solution to Eq.(7) should contain small terms. In order to obtain a higher order NLS
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equation, a new perturbation expansion method proposed by Luo (2000b) is used to solve Eq.(7).
Assume that Eq.(7) has the solution of /= y, + &,,. When y, is determined from Eq.(7) with-
out the terms equal to or greater than ¢, the nonlinear equation for i, can be obtained by substi-
tuting /= ¢, + &, into Eq.(7). If the solution of the nonlinear equation for y |, is assumed to
be of the form (= ¥ + &), then its linear solution ¥, can be easily derived when the higher
order terms larger than the order ¢ in this equation are neglected. Similarly, the nonlinear equation
for yr,, can also be obtained by substituting ¥ ,, = ¥, + &f,, into the nonlinear equation for ¢/, .
Through a series of the same algebraic operation, the asymptotic solution to Eq.(7) can be derived.
Based on this expansion method, a higher order NLS equation including higher order terms is also
obtained in such an algebraic operation. It should be pointed out that the advantage of the
perturbation expansion method used here can make nonlinear Schrodinger equation include the
higher order terms equal to or greater than the order ¢, but the traditional perturbation expansion
cannot,
In the present paper the prescribed topography is assumed to be of the form

W=, exp(t'kx)sin(%l- )+ C., ©)

2

m denotes the wavenumber of zonal

where 4/ is the topographic amplitude, k=

2n . . s
wavenumber—two, m= — -L—n— is the topographic meridional wavenumber, and C_ denotes the
y

complex conjugate of its preceding term.
Clearly, for the dipole meridional structure, the solution to Eq.(7) can be expressed as

Y=yt &, ¢T,xp,0)= AT Lo, yexplilkx— wt)]+

h b yexplikx)sin(my / 2)+ e, + C, (10)
where 4 is the slowly varying complex amplitude of linear Rossby wave for zonal
wavenumber—two, ¢, (y)= | Lsin(my), h,= —1—7— and w= uk— g + uF)k

Ly B s om K+ mi+ F
- (k + —4'-)

the frequency of linear Rossby wave for zonal wavenumber—two. Note that the second term in the
right—hand side of (10) is the standing wave induced by the wavy topography (9).
The substitution of (10) into Eq.(7) yields

Ly )+ li_cm (gm hy+ DA, (i )% [dexp(— iwt)— A~ exp(iwt)][Ssin(izrﬂy)— sin(%y)]

.V
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After a series of algebraic operation, under the condition =0 the solution to Eq.(11) can be
expressed as

l//l = l/Ill (T,C,X,y,t)‘l' l//12 (T5éaxsyat)+ l//13 (T’é9y)+ SWZ’ (12)
where
by = - k—”’(i 2+ 1)h'0(Li)%[Aexp(— jot)+
y
A" expliom)] ¥ Z((?’—a-s-_——-—)cos(nmy) (13)
Y= "—”‘(3 2y + 1)hf0(—2— 2 dexpli(2x— wt)][ulsin(3—my)— posinyl,  (4)
y
V= — 14| Zq g,cos(n+ = )my, (15)

n=1

andy, satisfies the equation

LU+ 2 (VP = Fby)+ 2= C )—"’5" G+ u——)T‘/’+ I Vi + 1)
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where the coefficients of (13)(15) are given in Appendix A.

Note that if 4=0 is allowed, (10) can be reduced to the topographically induced stationary
wave obtained by Tung and Lindzen (1979). When = B/ (k> + m* / 4), this wave is a resonant
topographically forced wave. This resonance is the so—called CDV—type monopole resonance
(Charney and Devore, 1979), which requires strong unrealistic basic westerly wind. However, be-
cause the Rossby wave studied here has a dipole meridional structure, the CDV—type monopole res-
onance does not occur when w is very small, but the dipole near—resonance is possible. This
near—resonance is the so—called LG—type dipole near—resonance (Legras and Ghil, 1985; Luo,
1997b), which requires weaker, more realistic background westerly wind (Luo, 1997b). When
LG—type dipole near—tesonance occurs, the CDV—type monopole resonance or near—resonance
can be avoided. If L, =5 (5000 km in the dimensional form, which is approximate to the meridional
scale of blockings) is allowed, then & =0.0183~ 0.0648 for z= 0.75~ 0.88 at 55°N, In this case, we
may assume w= &> Q. As a result, the envelope Rossby soliton studied is almost stationary and also
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called a near—resonant dipole soliton. For this reason, in this paper our attention is focused on stud-
ying near—resonant soliton,

Substituting (9), (10) and (12) into (16), the vanishing condition of expli(kx— wt)] requires
that

24 o Al* 4)
5T ,1—5 + 8|A|* A+ Shh A+ RR[A" expQRiQT)+ Al= ze{R,T+ Rz%
0|A| /20,4 2 04" 28
o R,h 07 + R W[ o exp(ZzQT)+ 2 ]}+ 0 )= 0, (17)

where Q= 22, and the coefficients of Eq.(17) are given in Appendix B.
3

It should be pointed out that although Eq.(17) contains the term wt(wr= QT), it only causes
the slow variation of the envelope amplitude 4. This assumption is crudely acceptable for a very
small w, However, if w is larger, Eq.(17) is invalid. This problem is beyond the scope of the present

paper.
Unde_r the condition A>0 and 6>0, if the transformations 4= Bexp(iQT)/ ‘/3 and

1
= (2A)2 X are made, then Eq.(17) can be rewritten as

2B 16 33 6(328)
i>T + -+ |B|*?B= P(B)= — ayB— vyB" + ze[v, + v, Ia)|(
asl* . 9B 9B
_3 R _1 R _1
where a,= (S+ R)A/3— = RWE, y,= (24) 2R,,y2=72(2i) 2, V3=73(21) 2,

Vo= (2,1)‘%(114 + Rs)h'y andys = (24)~ 2 RsH.

Eq.(18) is a new parametrically excited HNLS equation, which has not been yet obtained by the
previous investigators. This equation describes the interaction between slowly moving envelope
Rossby soliton for zonal wavenumber—two and wavenumber—two topography under the LG—type
dipole near—resonance, When both the topographic forcing and higher order terms (y,,7,,73,74,
and 7, ) are neglected, this equation reduces to the formal nonlinear Schrodinger (NLS) equation
governed by the envelope amplitude of nonlinear Rossby waves without forcing in the geophysical
fluid derived by Benney (1979), Yamagata (1980), Boyd(1983) and Luo (1991). Neglecting the terms
O(¢) in Eq.(18), it is identical to the parametrically excited NLS equation obtained by Miles (1984)
for parametrically excited solitary wave in surface water waves and then by Luo (1997a, 1999) for
parametrically forced envelope Rossby solitons. For case without forcing (h’, = 0), Eq.(18) reduces
to the HNLS equation obtained by Hasegawa and Kodama (1995) in the optical fibers and by Luo
(2000b) for weakly nonlinear Rossby waves. Naturally, Eq.(18) may be considered as an extension
of the NLS equation obtained by Miles (1984) and Luo(19972,1999). Here, if F=1.0 and L,=5.0
are allowed, then both A>0 and >0 always exist in the mid—high latitude regions. In this case,
Eq.(18) without both forcing and higher order terms possesses an envelope soliton solution
(Yamagata, 1980). In this paper, in order to gain a better understanding the interaction of slowly
moving envelope Rossby soliton with a wavenumber—two topography, we will present the numeri-
cal solution of Eq.(18) in the following section, '
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3. The interaction of slowly moving planetary—scale envelope Rossby soliton with a
wavenumber—two topography

We plot the horizontal distribution of wavenumber—two topography before the interaction of
slowly moving planetary—scale envelope Rossby soliton with wavenumber—two topography is inves-
tigated. If one defines 4, = ¢h’,, then the symmetric wavenumber—two topography can be ex-
pressed as

h= 2hycos(kx)sin(my / 2), (19)

In (19), because m /2= — n/ L , » the bottom topography exhibits a monopole structure in
the meridional direction, Figure 1 shows the horizontal distribution of wavenumber—two topogra-
phy at 55°N for the parameters L,=5.0and 1, = 0.5.

It is found that the height of the wavenumber—two topography is near 1.0 km, This horizontal
distribution represents the actual topography (the two oceans and two continents), and has the same
form as that given by Charney and DeVore (1979) and Liet al. (1986). In this figure, the positive re-
gions denote the topographic ridges (the two continents), while the negative regions represent the
topographic troughs (the two oceans),

In this paper, in order to investigate the propagation of planetary—scale envelope Rossby
soliton over a wavenumber—two topography, the finite difference scheme used by Taha and
Ablowitz (1984) will be applied in solving Eq.(18). The incipient envelope soliton solution to Eq.(18)
is assumed to be of the form

B(X,0)= Bysech(B,X), (20)

where B, is the value of B(X,0) at X=0.

We choose B, = 0.6Y68 /¢, eh’y= 0.5, &= 0.34, and u= 0.83. If one defines M= | B(X,T)|,
then the contour plots of M= | B(X,T)|, at 55°N are plotted in Fig. 2 in the soliton—topography
interaction,

We can see from Fig. 2a that when the higher order terms are neglected, the near—resonantly
forced envelope soliton does not propagate in the moving framework X even though it can be
amplified and can exhibit an amplitude oscillation. Only in the two flanks of the peak of the
large—amplitude soliton a series of small-amplitude wave trains can be observed. However, it is not

50 T 1T T 17T T T 1T 1T 1T 17T 1T 1T T°7 LI
4.0
3-0‘- -
+ K
2.0} 1
1.0
OO i1t 1 S N S N W N N N S N L1141
5.7 -2.9 -0.0 2.9 5.7

Fig. 1. The horizontal distribution of wavenumber—two topography at 55°N for the chosen parameters
L,=5 and i, = 0.5, Contour interval 0.2,
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Fig. 2. The contour plot of | B(X,T)| in the (X,T)}-plane for parameters eh’, = 0.5, e= 0.34, B,
=0.6Y% /¢ ,and w= 0.83: (a) without higher order terms; (b) with higher order terms,Contour interval 0.4,

difficuit to observe in Fig.2b that in the amplifying process of planetary—scale soliton by a
wavenumber—two topography, the large—~amplitude soliton peak propagates westward and a series
of small-amplitude wave trains that propagate westward are excited. Interestingly, the
large—amplitude soliton begins to propagate eastward after it reaches a certain location. The propa-
gation of the large—amplitude soliton peak is not clear in the moving framework X after it reaches
X=0. In order to show the propagation behaviour of planetary—scale envelope Rossby soliton, we
plot the distribution of M= | B(X,T)| only dependent on X for different T in Fig.3. We find that at
T=0 the maximum amplitude of | B(X,T)| for X=0 is near 0.72. However, at 7=3.0 it becomes

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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1.75 through the near—resonant forcing of wavenumber—two topography. The topographically
forced soliton is found to possess a deformation and to have a westward propagation, After 7=3.0
the soliton begins to break up and its maximum amplitude is also decreased. Further, at 7=6.0 this
soliton begins to propagate eastward, and at 7=7.0 its maximum amplitude is located in X =0 and
near 1,7, Afterwards, this soliton propagates westward again and its maximum amplitude is in-
creased. In the whole process, a series of smail—amplitude wave trains that propagate westward are
excited gradually. Therefore, we conclude that the higher order terms has an important influence on
the interaction between slowly moving planetary—scale envelope Rossby soliton and a
wavenumber—two topography.

Under the same condition as in Fig.2b, Fig. 4 shows the instantaneous total streamfunction
fields (the sum of the streamfunction fields of planetary—scale dipole soliton and topographically in-
duced standing wave) of slowly moving planetary—scale envelope Rossby soliton with an initial
amplitude B, = 0.6Y6 / ¢, at 55°N, interacting with a wavenumber—two topography for the same
parameters as in Fig.2. It is easy to find that in the soliton—topography interaction process, the incip-
ient small-amplitude slowly moving envelope Rossby soliton situated in x=0 can be amplified. At
day 0 only a weak blocking high, usually called “ high—index” flow, appears at x=0 because the
amplitude of the dipole soliton is too small. However, this planetary—scale soliton will be gradually
amplified through the near—resonant forcing of wavenumber—two topography. For example, at day
27, a blocking high is formed. Accompanied by the further amplifying of the soliton amplitude, this
blocking high will be further intensified and developed into an omega—type blocking (see the plots
during the period from day 33 to 57). After day 63, this blocking high begins to weaken. In the whole
process, the blocking high is almost located in the topographic trough. This may be the reason why
most of blocking high occurs in the two oceans (Treidl et al., 1981). We conclude that the observed
blocking highs may be associated with the near—resonant forcing of a wavenumber—two
topography. However, the forcing of synoptic—scale eddies was also found to play a rather impor-
tant role in the initiation and maintenance of dipole blockings (Shutts, 1983; Holopainen and
Foretlius, 1987). Thus, as a completely theoretical model of blocking the forcing of synoptic—scale
eddies should be included. This problem will be further investigated elsewhere, At 60°N, the instan-
taneous total streamfunction fields of slowly moving planetary—scale envelope Rossby soliton
interacting with a wavenumber—two topography for e¢h’y = 0.5,¢= 0.34, B, = 0.4Y8 / ¢, and
u= 0.75 are depicted in Fig. 5.

It can be seen from Fig.5 that in the higher—latitude region, the dipole blocking can be excited
through the near—resonant interaction between slowly moving envelope Rossby soliton and
wavenumber—two topography. This figure can describe the life cycle of dipole blocking. Thus, the
near—resonant interaction between slowly moving envelope Rossby soliton and wavenumber—two
topography can produce the dipole blocking in the higher—latitude region,

Egger (1978) showed that blocking could be produced through the nonlinear interaction among
forced and slowly moving free waves. Legras and Ghil (1985) pointed out that the LG—type dipole
resonance has a more complicated structure than the CDV—type monopole resonance. For a pre-
scribed monopole topography, in a complicated truncated spectral model they found that under the
LG—type dipole resonance condition, blocking high can occur in the upstream of the topographic
ridge. This also confirms from another aspect that our result is reasonable. Unfortunately, our mod-
el cannot model all observed blocking patterns because other physical factors have been ignored.
These problems deserve further study. On the other hand, it should be pointed out that-the choice of



248 Advances in Atmospheric Sciences Vol. 18

2.0 2.0
1.5 15
M 1.0 M1.0
0.5 05
0.0 . rrrPrrey rrrerrerr 0.0 Frrerr TP ;
~300 -200 —10.0 0.0 100 200  30.0 ~360 —200 ~10.0 0.0  10.0 200 30.0
(1=0.0) X (1=1.0) X
2.0 2.0 4
5 15
M1.0 M 1.0 4
0.5 0.5 7
]
0.0 0.0 3
-30.0 ~20.0 —1 =300 ~200 —100 00 100 200  30.0
(T=3.0) X
2.0 2.0 q
15 1.5
4
M1.0 M0
0.5 0.5
0.0 0.0
=300 ~200 —16.0 0.0 100 204  30.0 2300 —200 —10.0 0.0 100 200 300
(T=4.0) X (1=5.0) X

the perturbation parameter does not strongly influence our results, This problem is easily tested by
choosing £=0.24 (figures omitted). In the previous studies the topography is found to play a signifi-
cant role in the onset of blockings (Egger, 1978; Tung and Lindzen, 1979; Charney and DeVore,
1979). A very interesting problem is why the wavenumber—two topography can reinforce and main-
tain blocking high (Charney and Devore, 1979). This problem is not answered completely so far. In
the following section, this problem will be investigated by solving Eq.(18) in terms of the soliton
perturbation theory (Kaup and Newell, 1978; Abdullaev, 1989; Hasegawa and Kodama, 1995),

4. Why can the wavenumber—two topography reinforce and maintain blocking?

It is not difficult to see from Fig.3 that in the soliton—topography interaction, the breakdown of
the soliton is not remarkable. In this case, in order to explore the underlying physical mechanism of
blocking high, the solution to Eq.(18) is still assumed to be an envelope soliton solution, This as-
sumption is approximately acceptable before the soliton breaks up completely. In the present paper,
the topographic forcing and higher order terms in Eq.(18) are regarded as a perturbation of the for-
mal NLS equation. On this basis, the perturbed inverse scattering transform (IST) method can be
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Fig. 3. The evolution of| B(X,T')| for different T. The chosen parameters are the same as in Fig. 2b,

also used to solve Eq.(18) even when the perturbation term P(B) is not small (Chen and Wei, 1994,
Hasegawa and Kodama, 1995),

In the interaction between slowly moving dipole envelope Rossby soliton and
wavenumber—two topography, the soliton parameters such as amplitude, group velocity and phase
can be assumed to be slow time—variation, In this case, in order to investigate the evolution of the
fundamental NLS soliton under the topographic forcing and higher order terms, the solution of
Eq.(18) can be assumed to have the general form of the soliton solution depending on 7, that is,

B(X,T)= By (T)sech{ By (T X+ w(T)I}expli0(T)], @1
where B (T), x(T") and 0(T) are the amplitude, group velocity and phase of the soliton.
The evolution equations for these soliton parameters can be obtained with the help of the in-

verse scattering transform (IST) method of the soliton perturbation theory (Kaup and Newell, 1978;
Kivshar and Malomed, 1989; Abdullaev, 1989; Hasegawa and Kodama, 1995). If one defines 0(¢* 1)
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= P(t), eB, (' 1)= V6 M(t) and Z(1)= x(e*t)Y 24 / ¢, then these soliton parameter equations
can be easily obtained as
aM

7 = 2vMsin2P, (22)
%: - Mz(%R] -~ R,— §R3)+ (Ry+ RsRE+ Ry hicos2P, (23)
‘2—1; = %Mz + a+ ycos2P, (24)

wherea= 2o, = (S+ RMi— 0 , v=¢€vy= Rh} and hy,= eh’,.

Eqs.(22)(24) describe the deformation of a slowly moving planetary—scale dipole envelope
Rossby soliton during the interaction with a wavenumber—two topography in terms of its
amplitude, group velocity and phase including the higher order terms, In these equations, it can be
found that the equations for variables M (¢) and P(t) are independent of variable Z(¢), but the equa-
tion for Z(¢) contains both variables M (¢) and P(¢). Thus, it can be concluded that the Z(z) equa-
tion has no stationary solution even if the equations for variables M(¢r) and P(¢) have stationary
state solutions, It can be proved from Eqs.(22)—(24) that stable, slowly moving dipole envelope
Rossby soliton can exist over a wavenumber—two topography.

Using (4),(10) and (12), the total streamfunction of planetary—scale dipole envelope Rossby
soliton interacting with wavenumber—two topography can be expressed as

U —uyt e, + e lﬁl +0@E)=—uy+ 2(——)2 M(t)sech{( )2 M@)x— Cgt+ Z@)}

)’

coslkx+ P(t)lsin(my)+ 2k, h, cos(kx)sm(— y—-M (¢)? sech?{ M WIx— Cgt+ Z(W}—

.2_’3(2 hAm*+ D, / = M(t)sech{EM(t)[x— Cgt+ Z(W}}

- cos[P(t)]cos[P(z)] Z (——2 cos(nmy)
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Fig. 4. The instantaneous total streamfunction field of envelope Rossby soliton with higher order terms

interacting with the wavenumber—two topography at 55°N, at 3 days intervals, for the same parameters as
in Fig.2b, Contour interval 0,3,

+ kT’"(%mzhA + Dhy | 2= M(@)sech{ 2‘57 M@lx— Cgt+ Z(cosl2kx+ P(r)]
y

X [p, Sin(%my)— PzSin(%}’)]. (25)

In (25), the second term denotes the streamfunction of the slowly moving dipole envelope
Rossby soliton, and the third term represents the streamfunction of the topographically induced sta-
tionary wave having a monopole meridional structure. It is not difficult to find that if M(¢)= 0 is
chosen, (25) is identical to the expression of the topographically induced standing wave obtained by
Tung and Lindzen (1979). For a prescribed background westerly wind, when 4, < 0(u— u,
<0,u.= B/ K+ m*/4)is satisfied, a high pressure appears in the topographic trough and a
low pressure appears in the topographic ridge because of m< 0. Contrarily, when 4 , > 0(u— u,
> 0) holds, a low pressure trough is formed in the topographic trough. Generally speaking, the uni-
form basic flow that satisfies the LG—type dipole near—resonance can make #, < < %, and cause a
small u— u, (u, = B/ (k* + m?)). In this case, & 4 < 0 is easily satisfied. For this case, a high pres-.
sure ridge may appear in the topographic trough, On the other hand, although planetary—scale
dipole envelope Rossby soliton studied here possesses a dipole meridional structure, its total
streamfunction does not exhibit certainly a dipole structure, This is because the total streamfunction
field of the topographically forced dipole envelope Rossby soliton is dependent on the relative mag-
nitude of the amplitude itself and the amplitude of the topographically forced stationary wave.

Based on (25), we can define Cgm= Cg— dZ / dt and Cpm(t)= — dP / dt as the group
velocity and phase speed of topographically forced planetary—scale soliton, respectively. In addition,
we may define Cgp= Cgm— Cpm as a measure of dispersion. When Cgp tends to be zero, the
planetary—scale envelope soliton gradually becomes a non—dispersive system, If the higher order
terms for the order O(e) are neglected, then the soliton group velocity is independent of
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Fig. 5. The instantaneous total streamfunction field of envelope Rossby soliton with higher order terms
interacting with the wavenumber—two topography at 60°N, at 3 days intervals, for the same parameters
eh'y=0.5,s= 0.34, B,= 0.4Y4 /& , andii= 0.75. Contour interval 0.2.

the topographic feature, but both its amplitude and phase speed depend strongly on the topographic
amplitude, However, once the higher order terms are included, the wavenumber—two topography
will affect directly the group velocity of the planetary—scale soliton, On the other hand, because both
R, and R; contain the term 4 ,, the influence of wavenumber—two topography on the soliton
group velocity (Cgm) is also dependent on the setting of the near—resonant uniform westerly wind,

As M(¢) increases from small to large value, the soliton is amplified by the topography. If Cgp
tends to be zero, the planetary—scale envelope soliton can become a weak dispersion even
non—dispersion system through the near—resonant forcing of wavenumber—two topography. Thus,
if the numerical solutions of Egs.(22)—(24) can be obtained, the physical mechanism of blocking high
produced by a wavenumber—two topography can be understood. In this section, we give the numer-
ical results of Egs.(22)—24).

Here, in order to emphasize the role of wavenumber—two topography, as a simplest example
we consider a small amplitude envelope Rossby soliton as an incipient soliton, Without the loss of
generality we choose the initial data M(0)= 0.6, Z(0)= 0.0, and P(0)= 0.0 at 55°N. The
fourth—order Rung—Kutta method is applied to solve Eq.(22)—(24) for parameters 4, = 0.5 and u
= (.83, and the numerical solutiéns of M (¢), Cgm, Cpm, and Cgp are shown in Fig. 6.

Figure 6 shows the evolution of the parameters M (), Cgm, Cpm and Cgp in the interaction of
slowly moving planetary—scale dipole soliton with a wavenumber—two topography at 55°N. It
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Fig. 6. Time evolution of M(t), Cgm,Cpm , and Cgp during the interaction of slowly moving
planetary—scale envelope soliton with wavenumber—two topography at 55°N for parameters 4, = 0.5 and
u= 0.83. The dashed curve represents the case without higher order terms, while the solid curve represents
the case with higher order terms, Both M (¢) and Cpm are the same for the two cases,

can be noted from this figure that for u= 0.83, as an incipient small-amplitude planetary—scale
soliton, located in the topographic trough, it interacts with a wavenumber—two topography. The
soliton amplitude M (¢) can increase from 0.6 at day 0 to 1,75 at day 26, and then recover its initial
amplitude at day 50, Afterwards, a new oscillation cycle with the same period reappears. In the total
process, we note that the higher order terms can decrease the soliton group velocity, but does not in-
fluence both the soliton amplitude and the phase speed. On the other hand, it can be found that un-
der the condition with the higher order terms, Cgp tends to be zero even negative in the amplifying
process of planetary—scale soliton, In this case, the soliton system has a transfor from dispersion to
non—dispersion. This shows that the higher order terms favor the maintenance of blocking high by
wavenumber—two topography. This point is easily explained, This is because the inclusion of the
higher order terms seems to further emphasize the role of stronger nonlinearity in the establishment
of blocking high. In particular, when the nonlinearity becomes so strong that the wave amplitude
equation satisfies the KdV equation, the blocking system will become a non—dispersive wave, Thus,
under the condition with the higher order terms the blocking system can maintain easily. In other
words, the blocking high will become a weak dispersion even non—dispersion system during the
stages of its onset and maintenance, but during its decay stage the blocking high will become a
dispersion system, To some extent, the results obtained in Fig.6 can explain why the
wavenumber—two topography can reinforce and maintain blocking high. Using (25) we can also ob-
tain a blocking structure similar to Fig.4 (figures omitted). The onset, maintenance and decay of
dipole blocking in higher latitudes can be similarly explained in terms of the numerlcal solutions of
M(t), Cgm,Cpm, and Cgp at 66°N similar to Fig.6 (figures omitted).
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5. Conclusion and discussions

In this paper, a new parametrically excited higher order nonlinear Schrédinger equation is pro-
posed to investigate the near—resonant interaction between slowly moving planetary—scale envelope
Rossby soliton and wavenumber—two topography. It is found that when the background westerly
wind is under the LG—type dipole near—resonance (Legras and Ghil 1985; Luo, 1997b),
planetary—scale envelope Rossby soliton can be topographically amplified and captured. The role of
the higher order terms can cause a transfer of soliton—block from dispersion to weak dispersion even
non—dispersion. In addition, a series of small—amplitude wave trains that propagate westward can
be excited in this interaction process. There is a similarity between the topographically amplified,
captured dipole envelope Rossby soliton and observed blockings. Thus, the topographically ampli-
fied, captured dipole envelope Rossby soliton seems to be able to be considered as a model of the on-
set, maintenance and decay of regional blocking.

Several important questions remain to be examined. First, the direct comparison of these re-
sults with the observed blocking and the numerical result of the barotropic model should be made.
Also, it 18 interesting to see whether our topographically amplified planetary—scale envelope Rossby
soliton is in detail consistent with the observed transience of blocking, Second, the topographically
forced planetary—scale envelope soliton model studied here should contain more physical processes
such as baroclinicity, land—sea differential heating and so on. We plan to continue this study with a
two—level baroclinic model. On the other hand, a comparison with observational fact should be
made. These problems are under current study.
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Appendix A

The coefficients of (13)—(15) are defined by
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Appendix B

The coefficients of (17) are defined by
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